Investigating CPT violation with sterile neutrino fits Christina Ignarra August 7, 2009 #### LSND LSND result: Observed allowed region of Δm^2 not consistent with known mass splittings. A 3rd mass splitting solves this problem $$\Delta m^2_{solar} \sim 10^{-5} \text{ eV}^2$$ $$\Delta m^2_{atm} \sim 10^{-3} \text{ eV}^2$$ $$\Delta m^2_{LSND} \sim 1 \text{ eV}^2$$ #### Sterile neutrinos Don't interact through the weak force but can still oscillate with other neutrinos Assume $\Delta m^2_{sterile}$ is much greater than Δm^2_{atm} and Δm^2_{solar} so only fit to one Δm^2 and one mixing parameter. (So when we say 3+1 we really mean a 2 neutrino fit) $$P(v_{\alpha} \rightarrow v_{\beta \neq \alpha}) = \sin^2 2\theta_{\alpha\beta} \sin^2 [1.27(L/E)]$$ (Appearance) $$P(v_{\alpha} \rightarrow v_{\alpha}) = \sin^2 2\theta_{\alpha\alpha} \sin^2 [1.27(L/E)]$$ (Disappearance) #### P and CPT Violation 3+1 and 3+2 fits usually assume CPT conservation ($P_{dis}v = P_{dis}v$) Occasionally introduce CP violation $(P_{app} v \neq P_{app} \overline{v})$ for better fits. CP violation is already known to occur in the weak interaction CP violation can NOT explain $(P_{dis} v \neq P_{dis} \overline{v})$ CPT violation would be bad for physics! It is one of the key principles of quantum field theory. If observed, some lack of symmetry between $P_{dis}v$ and $P_{dis}\overline{v}$ could possibly be explained by new physics, such as a new type of interaction, which may save CPT conservation ## MINOS Preliminary MINOS favoring Δm^2 around 0.01 to $\sim 0.4 \text{ eV}^2$. For v, the best fit value from MINOS and other atmospheric experiments is known to lie at ~3 x 10⁻³ eV² with maximal mixing (~1) MINOS v_u 90% Global v 90% #### MINOS -3+1 Fit Preliminary 3+1 fits indicate a preferred Δm_{41}^2 around 0.5 eV^2 Don't have E_{true} and L_{true} information per event (data not yet released) Fit with statistical error on data Fit with statistical error on prediction $$\chi^2$$ dof Probability Δm_{41}^2 $\sin^2 2\theta_{\mu\mu}$ χ^2 dof Probability Δm_{41}^2 $\sin^2 2\theta_{\mu\mu}$ 3.8 5 57.9% 0.469 0.646 3.4 5 63.9% 0.467 0.535 #### Fitting to (preliminary) MINOS data MINOS data & fit from Fermilab wine and cheese (Jeff Hartnell - May 2009) plus some 3+1 fits ## v only fit Experiments included in fit: MINOS LSND Miniboone $\overline{\nu}_{a}$ **KARMEN** Bugey Chooz Best fit: $sin^2 2\theta_{\mu e}$ Δm^2_{41} $\sin^2 2\theta$ dof Probability **Before MINOS** 103 86% 0.91 0.0043 0.350 With MINOS 92.26 110 0.912 0.405 89% 0.0044 MINOS data fits in nicely with previous \overline{v} fit ## v only fit From Karagiorgi et al. 2009 (arxiv:0906.1997v1) Experiments included in fit: Miniboone v_e NOMAD NuMI CCFR84 **CDHS** Best fit: χ^2 dof Probability $\Delta m_{41}^2 \sin^2 2\theta_{\mu e} \sin^2 2\theta_{\mu \mu}$ 90.5 90 47% 0.190 0.0310 0.0310 Looks different from \overline{v} fit ## Global 3+1 fit all experiments ## **Experiments** included in fit: v experiments: MINOS , LSND, Miniboone v_e, KARMEN, Bugey, Chooz v experiments: Miniboone v_e , NOMAD, NuMI, CCFR84, CDHS, atmospheric constraint | | χ^2 | dof | Probability | Δm^2_{41} | SIn ² 20 _{µe} | sin ² 2θ _{μμ} | |--------------|----------|-----|-------------|-------------------|-----------------------------------|-----------------------------------| | Before MINOS | 197.4 | 196 | 46% | 0.920 | 0.0025 | 0.130 | | After MINOS | 196.2 | 203 | 62% | 0.403 | 0.0130 | 0.0904 | ## Global fit - CPT Violating Allows Δm² to vary separately for neutrinos and antineutrinos Not yet allowing mixing parameters to vary separately #### Best fit: | χ^2 | 189.8 | |---------------------------|--------| | dof | 204 | | Probability | 75% | | Δm^2 | 0.255 | | Δm ² bar | 0.402 | | $\sin^2 2\theta_{\mu e}$ | 0.0188 | | $\sin^2 2\theta_{\mu\mu}$ | 0.0899 | # $\Delta m_{\nabla}^2 vs \Delta m_{\nabla}^2$ Points along line obey CPT Best fit not along line No 90% CL points along line either #### 3+2 Fit to MINOS #### Best fit values: χ^2 dof Probability Δm_{41}^2 Δm_{51}^2 3.4 3 33% 0.463 0.467 Second Δm^2 not favored Don't have near detector data or good energy info. It's possible things will change ## Coming Soon... Full event sample for MINOS Allow Mixing parameters to vary separately too for CPT violating fits Including the new MiniBooNE v_{μ} and \overline{v}_{μ} disappearance data